Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. Small 2018 Jan;14(4)



Pubmed ID


Pubmed Central ID




Scopus ID

2-s2.0-85040970185 (requires institutional sign-in at Scopus site)   96 Citations


Combination of optogenetics and pharmacology represents a unique approach to dissect neural circuitry with high specificity and versatility. However, conventional tools available to perform these experiments, such as optical fibers and metal cannula, are limited due to their tethered operation and lack of biomechanical compatibility. To address these issues, a miniaturized, battery-free, soft optofluidic system that can provide wireless drug delivery and optical stimulation for spatiotemporal control of the targeted neural circuit in freely behaving animals is reported. The device integrates microscale inorganic light-emitting diodes and microfluidic drug delivery systems with a tiny stretchable multichannel radiofrequency antenna, which not only eliminates the need for bulky batteries but also offers fully wireless, independent control of light and fluid delivery. This design enables a miniature (125 mm3 ), lightweight (220 mg), soft, and flexible platform, thus facilitating seamless implantation and operation in the body without causing disturbance of naturalistic behavior. The proof-of-principle experiments and analytical studies validate the feasibility and reliability of the fully implantable optofluidic systems for use in freely moving animals, demonstrating its potential for wireless in vivo pharmacology and optogenetics.

Author List

Noh KN, Park SI, Qazi R, Zou Z, Mickle AD, Grajales-Reyes JG, Jang KI, Gereau RW 4th, Xiao J, Rogers JA, Jeong JW


Aaron D. Mickle PhD Associate Professor in the Physiology department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Wireless Technology