Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Inhibition of fatty acid amide hydrolase suppresses referred hyperalgesia induced by bladder inflammation. BJU Int 2011 Oct;108(7):1145-9

Date

09/02/2010

Pubmed ID

20804480

Pubmed Central ID

PMC3505723

DOI

10.1111/j.1464-410X.2010.09583.x

Scopus ID

2-s2.0-80052797640 (requires institutional sign-in at Scopus site)   36 Citations

Abstract

OBJECTIVE: • To determine (i) the presence of fatty acid amide hydrolase (FAAH) in the urinary bladder; (ii) whether or not endogenous fatty acid ethanolamides are synthesized by the bladder; (iii) the effects of FAAH inhibition on referred hyperalgesia associated with acute bladder inflammation in rats.

MATERIALS AND METHODS: • Immunohistochemistry and immunoblotting were performed to detect FAAH in the bladder. Acrolein (1 mM, 400 µL) was instilled into bladders of female Wistar rats to induce cystitis. Referred mechanical hyperalgesia was assessed by application of Von Frey monofilaments to the hind paws. • Animals were killed 4, 24, 48 and 72 h after acrolein instillation, and the fatty acid ethanolamide content of bladders was measured using isotope-dilution liquid chromatography/mass spectrometry. • Other rats were treated with the FAAH inhibitor URB597 (0.3 mg/kg, i.p.) after the induction of cystitis, and the mechanical sensitivity of the hind paws was determined.

RESULTS: • Immunohistochemistry and immunoblotting showed the presence of FAAH in the bladder, with greatest abundance in the urothelium. • Acrolein-induced cystitis increased fatty acid ethanolamide content (including anandamide) in the bladder in a time-dependent manner. Inhibition of FAAH diminished referred hyperalgesia associated with acute bladder inflammation.

CONCLUSIONS: • The results obtained in the present study indicate that (i) FAAH is present in the urinary bladder; (ii) fatty acid ethanolamides are increased during bladder inflammation; (iii) inhibition of FAAH could be an effective therapeutic approach for the treatment of bladder pain. • These results raise the possibility that inhibitors of enzymes responsible for metabolism of fatty acid ethanolamides could inhibit pain associated with bladder inflammation.

Author List

Merriam FV, Wang ZY, Hillard CJ, Stuhr KL, Bjorling DE

Author

Cecilia J. Hillard PhD Associate Dean, Center Director, Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Amidohydrolases
Animals
Cystitis
Female
Hyperalgesia
Rats
Rats, Wistar