Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region. Inhal Toxicol 2009 Dec;21(14):1165-75

Date

10/17/2009

Pubmed ID

19831956

DOI

10.3109/08958370902882713

Scopus ID

2-s2.0-75349091411   45 Citations

Abstract

In vivo experiments have shown that nanoparticles depositing in the rat olfactory region can translocate to the brain via the olfactory nerve. Quantitative predictions of the dose delivered by inhalation to the olfactory region are needed to clarify this route of exposure and to evaluate the dose-response effects of exposure to toxic nanoparticles. Previous in vivo and in vitro studies quantified the percentage of inhaled nanoparticles that deposit in the rat nasal passages, but olfactory dose was not determined. The dose to specific nasal epithelium types is expected to vary with inhalation rate and particle size. The purpose of this investigation, therefore, was to develop estimates of nanoparticle deposition in the nasal and, more specifically, olfactory regions of the rat. A three-dimensional, anatomically accurate, computational fluid dynamics (CFD) model of the rat nasal passages was employed to simulate inhaled airflow and to calculate nasal deposition efficiency. Particle sizes from 1 to 100 nm and airflow rates of 288, 432, and 576 ml/min (1, 1.5, and 2 times the estimated resting minute volume) were simulated. The simulations predicted that olfactory deposition is maximum at 6-9% of inhaled material for 3- to 4-nm particles. The spatial distribution of deposited particles was predicted to change significantly with particle size, with 3-nm particles depositing mostly in the anterior nose, while 30-nm particles were more uniformly distributed throughout the nasal passages.

Author List

Garcia GJ, Kimbell JS

Author

Guilherme Garcia PhD Assistant Professor in the Biomedical Engineering department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Animals
Biological Transport
Computer Simulation
Diffusion
Imaging, Three-Dimensional
Inhalation
Inhalation Exposure
Male
Models, Anatomic
Nanoparticles
Nasal Mucosa
Olfactory Mucosa
Particle Size
Rats
Rats, Inbred F344
Rats, Sprague-Dawley
Risk Assessment
jenkins-FCD Prod-482 91ad8a360b6da540234915ea01ff80e38bfdb40a