Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol (1985) 2007 Sep;103(3):1082-92

Date

06/16/2007

Pubmed ID

17569762

DOI

10.1152/japplphysiol.01118.2006

Scopus ID

2-s2.0-34548442846 (requires institutional sign-in at Scopus site)   183 Citations

Abstract

Atrophic rhinitis is a chronic disease of the nasal mucosa. The disease is characterized by abnormally wide nasal cavities, and its main symptoms are dryness, crusting, atrophy, fetor, and a paradoxical sensation of nasal congestion. The etiology of the disease remains unknown. Here, we propose that excessive evaporation of the mucous layer is the basis for the relentless nature of this disease. Airflow and water and heat transport were simulated using computational fluid dynamics (CFD) techniques. The nasal geometry of an atrophic rhinitis patient was acquired from computed tomography scans before and after a procedure to narrow the nasal cavity. Simulations of air conditioning in the atrophic nose were compared with similar computations performed within the nasal geometries of four healthy humans. The excessively wide cavity of the patient generated abnormal flow patterns, which led to abnormal patterns of water fluxes across the wall. Geometrically, the atrophic nose had a much lower surface area than the healthy nasal passages, which increased water fluxes per unit area. Nevertheless, the simulations indicated that the atrophic nose did not condition inspired air as effectively as the healthy geometries. These simulations of water transport in the nasal cavity are consistent with the hypothesis that excessive evaporation of mucus plays a key role in the pathophysiology of atrophic rhinitis. We conclude that the main goals of a surgery to treat atrophic rhinitis should be 1) to restore the original surface area of the nose, 2) to restore the physiological airflow distribution, and 3) to create symmetric cavities.

Author List

Garcia GJ, Bailie N, Martins DA, Kimbell JS

Author

Guilherme Garcia PhD Assistant Professor in the Biomedical Engineering department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adult
Air
Computer Simulation
Hot Temperature
Humans
Inhalation
Male
Models, Biological
Nasal Cavity
Nasal Mucosa
Rhinitis, Atrophic
Water