Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 2006 Dec;319(3):1200-10

Date

09/21/2006

Pubmed ID

16985166

DOI

10.1124/jpet.106.111351

Scopus ID

2-s2.0-33751189857 (requires institutional sign-in at Scopus site)   86 Citations

Abstract

We used pharmacological agents and genetic methods to determine whether the potent A(3) adenosine receptor (AR) agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (Cl-IB-MECA) protects against myocardial ischemia/reperfusion injury in mice via the A(3)AR or via interactions with other AR subtypes. Pretreating wild-type (WT) mice with Cl-IB-MECA reduced myocardial infarct size induced by 30 min of coronary occlusion and 24 h of reperfusion at doses (30 and 100 mug/kg) that concomitantly reduced blood pressure and stimulated systemic histamine release. The A(3)AR-selective antagonist MRS 1523 [3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine-carboxylate], but not the A(2A)AR antagonist ZM 241385 [4-{2-7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl}phenol], blocked the reduction in infarct size provided by Cl-IB-MECA, suggesting a mechanism involving the A(3)AR. To further examine the selectivity of Cl-IB-MECA, we assessed its cardioprotective effectiveness in A(3)AR gene "knock-out" (A(3)KO) mice. Cl-IB-MECA did not reduce myocardial infarct size in A(3)KO mice in vivo and did not protect isolated perfused hearts obtained from A(3)KO mice from injury induced by global ischemia and reperfusion. Additional studies using WT mice treated with compound 48/80 [condensation product of p-methoxyphenethyl methylamine with formaldehyde] to deplete mast cell contents excluded the possibility that Cl-IB-MECA was cardioprotective by releasing mediators from mast cells. These data demonstrate that Cl-IB-MECA protects against myocardial ischemia/reperfusion injury in mice principally by activating the A(3)AR.

Author List

Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA

Authors

John A. Auchampach PhD Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin
Tina C. Wan PhD Research Scientist II in the Pediatrics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adenosine
Adenosine A3 Receptor Agonists
Animals
Blood Pressure
Cardiotonic Agents
Cell Degranulation
Cells, Cultured
Cyclic AMP
Dose-Response Relationship, Drug
Histamine
In Vitro Techniques
Male
Mice
Mice, Knockout
Myocardial Infarction
Myocardial Reperfusion Injury
Myocardium
Pyridines
Radioligand Assay
Receptor, Adenosine A3
Triazines
Triazoles
p-Methoxy-N-methylphenethylamine