Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol (1985) 1995 Nov;79(5):1796-802

Date

11/01/1995

Pubmed ID

8594043

DOI

10.1152/jappl.1995.79.5.1796

Scopus ID

2-s2.0-0028883798 (requires institutional sign-in at Scopus site)   92 Citations

Abstract

The purpose of this study was to examine the time course of change in soleus muscle fiber peak force (N), tension (Po, kN/m2), elastic modulus (Eo), and force-pCa and stiffness-pCa relationships. After 1, 2, or 3 wk of hindlimb unloading (HU), single fibers were isolated and placed between a motor arm and a transducer, and fiber diameter, peak absolute force, Po, Eo, and force-pCa and stiffness-pCa relationships were characterized. One week of HU resulted in a significant reduction in fiber diameter (68 +/- 2 vs 57 +/- 1 microns), force (3.59 +/- 0.15 vs. 2.19 +/- 0.12 x 10(-4) N), Po (102 +/- 4 vs. 85 +/- 2 kN/m2), and Eo (1.96 +/- 0.12 vs. 1.37 +/- 0.13 x 10(7) N/m2), and 2 wk of HU caused a further decline in fiber diameter (45 +/- 1 microns), force (1.31 +/- 0.06 x 10(-4) N), and Eo (0.96 +/- 0.09 x 10(7) N/m2). Although the mean fiber diameter and absolute force continued to decline through 3 wk of HU, Po recovered to values not significantly different from control. The Po/Eo ratio was significantly increased after 1 (5.5 +/- 0.3 to 7.1 +/- 0.6), 2, and 3 wk of HU, and the 2-wk (9.5 +/- 0.4) and 3-wk (9.4 +/- 0.8) values were significantly greater than the 1-wk values. The force-pCa and stiffness-pCa curves were shifted rightward after 1, 2, and 3 wk of HU. At 1 wk of HU, the Ca2+ sensitivity of isometric force, assessed by Ca2+ concentration required for half-maximal force, was increased from the control value of 1.83 +/- 0.12 to 2.30 +/- 0.10 microM. In conclusion, after HU, the decrease in soleus fiber Po can be explained by a reduction in the number of myofibrillar cross bridges per cross-sectional area. Our working hypothesis is that the loss of contractile protein reduces the number of cross bridges per cross-sectional area and increases the filament lattice spacing. The increased spacing reduces cross-bridge force and stiffness, but Po/Eo increases because of a quantitatively greater effect on stiffness.

Author List

McDonald KS, Fitts RH

Author

Robert Fitts PhD Professor in the Biological Sciences department at Marquette University




MESH terms used to index this publication - Major topics in bold

Animals
Calcium
Isometric Contraction
Male
Muscle, Skeletal
Random Allocation
Rats
Rats, Sprague-Dawley
Weightlessness