Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Contractile and biochemical properties of diaphragm: effects of exercise training and fatigue. J Appl Physiol (1985) 1986 May;60(5):1752-8

Date

05/01/1986

Pubmed ID

2940218

DOI

10.1152/jappl.1986.60.5.1752

Scopus ID

2-s2.0-0022483725 (requires institutional sign-in at Scopus site)   42 Citations

Abstract

The effect of high-intensity trained (6 X 4.5 min at 40 m/min, 15% grade, 2.5-min rest between bouts, 5 days/wk, for 6 wk) on contractile, biochemical, and fatigue properties of the rat diaphragm were examined. The exercise program produced significant elevations in the mitochondrial marker enzyme citrate synthase (mumol X g-1 X min-1) in the soleus (SOL) (27.2 +/- 1.5 vs. 46.7 +/- 2.4; mean +/- SE), deep vastus lateralis (DVL) (40.8 +/- 2.6 vs. 58.3 +/- 2.8), and superficial vastus lateralis (SVL) (8.5 +/- 0.6 vs. 11.4 +/- 0.7). No significant differences were observed in the crural (CRU) (45.9 +/- 2.0 vs. 44.0 +/- 2.3) or ventral costal (VEN) (41.5 +/- 2.0 vs. 45.8 +/- 2.6) diaphragmatic regions. Phosphofructokinase, the rate-limiting enzyme of glycolysis, significantly increased in the SOL (19.0 +/- 0.8 vs. 23.3 +/- 1.3 mumol X g-1 X min-1) and DVL (69.3 +/- 6.0 vs. 86.6 +/- 5.0), but no alterations were seen in the SVL (98.6 +/- 5.7 vs. 106.1 +/- 9.0), CRU (54.4 +/- 2.8 vs. 53.8 +/- 1.5), or VEN (44.7 +/- 2.4 vs. 46.4 +/- 1.4) posttraining. Diaphragm contractile properties, with the exception of an increased rate of fall in twitch tension, remained unchanged after training. Glycogen values were significantly higher in trained diaphragms at rest (6.54 +/- 0.39 vs. 4.86 +/- 0.41 mg/g) and during 1, 5, and 10 min of fatiguing stimulation. During fatigue no differences were observed in force, rate of rise in force, rate of fall in force, muscle lactate, ATP, or creatine phosphate in trained vs. control.(ABSTRACT TRUNCATED AT 250 WORDS)

Author List

Metzger JM, Fitts RH

Author

Robert Fitts PhD Professor in the Biological Sciences department at Marquette University




MESH terms used to index this publication - Major topics in bold

Adenosine Triphosphate
Animals
Citrate (si)-Synthase
Creatine Kinase
Diaphragm
Female
Glycogen
In Vitro Techniques
Lactates
Lactic Acid
Muscle Contraction
Phosphofructokinase-1
Physical Conditioning, Animal
Physical Exertion
Rats
Rats, Inbred Strains