Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech 2016 06 14;49(9):1670-1678

Date

04/17/2016

Pubmed ID

27083059

Pubmed Central ID

PMC4885785

DOI

10.1016/j.jbiomech.2016.03.051

Scopus ID

2-s2.0-84964330707   18 Citations

Abstract

The relationship between nasal resistance (R) and airspace minimal cross-sectional area (mCSA) remains unclear. After the introduction of acoustic rhinometry, many otolaryngologists believed that mCSA measurements would correlate with subjective perception of nasal airway obstruction (NAO), and thus could provide an objective measure of nasal patency to guide therapy. However, multiple studies reported a low correlation between mCSA and subjective nasal patency, and between mCSA and R. This apparent lack of correlation between nasal form and function has been a long-standing enigma in the field of rhinology. Here we propose that nasal resistance is described by the Bernoulli Obstruction Theory. This theory predicts two flow regimes. For mCSA>Acrit, the constriction is not too severe and there is not a tight coupling between R and mCSA. In contrast, when mCSA<Acrit, nasal resistance is dominated by the severe constriction and it is predicted to be inversely proportional to the minimal cross-sectional area (R∝mCSA(-1)). To test this hypothesis, computational fluid dynamics (CFD) simulations were run in 3-dimensional models based on computed tomography scans of 15 NAO patients pre- and post-surgery (i.e., 60 unilateral nasal cavities). Airspace cross-sectional areas were quantified perpendicular to airflow streamlines. Our computational results are consistent with the theory. Given that in most people mCSA>Acrit (estimated to be 0.37cm(2)), this theory suggests that airway constrictions are rarely an exclusive contributor to nasal resistance, which may explain the weak correlation between mCSA and subjective nasal patency.

Author List

Garcia GJM, Hariri BM, Patel RG, Rhee JS

Authors

Guilherme Garcia PhD Assistant Professor in the Biomedical Engineering department at Medical College of Wisconsin
John S. Rhee MD Chair, Professor in the Otolaryngology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Adult
Airway Resistance
Female
Humans
Hydrodynamics
Male
Models, Biological
Nasal Cavity
Nasal Obstruction
Respiration
Rhinometry, Acoustic
jenkins-FCD Prod-482 91ad8a360b6da540234915ea01ff80e38bfdb40a