Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Imaging the adult zebrafish cone mosaic using optical coherence tomography. Vis Neurosci 2016 01;33:E011



Pubmed ID


Pubmed Central ID




Scopus ID

2-s2.0-85020503535   3 Citations


Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics.

Author List

Huckenpahler AL, Wilk MA, Cooper RF, Moehring F, Link BA, Carroll J, Collery RF


Joseph J. Carroll PhD Director, Professor in the Ophthalmology and Visual Sciences department at Medical College of Wisconsin
Ross F. Collery PhD Assistant Professor in the Ophthalmology and Visual Sciences department at Medical College of Wisconsin
Alison Huckenpahler in the CTSI department at Medical College of Wisconsin - CTSI
Brian A. Link PhD Professor in the Cell Biology, Neurobiology and Anatomy department at Medical College of Wisconsin

MESH terms used to index this publication - Major topics in bold

Animals, Genetically Modified
Green Fluorescent Proteins
Microscopy, Fluorescence
Retinal Cone Photoreceptor Cells
Tomography, Optical Coherence
jenkins-FCD Prod-486 e3098984f26de787f5ecab75090d0a28e7f4f7c0