Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Upregulation of fatty acid amide hydrolase in the dorsal periaqueductal gray is associated with neuropathic pain and reduced heart rate in rats. Am J Physiol Regul Integr Comp Physiol 2017 Apr 01;312(4):R585-R596

Date

02/06/2017

Pubmed ID

28148494

Pubmed Central ID

PMC6668034

DOI

10.1152/ajpregu.00481.2016

Scopus ID

2-s2.0-85017328671 (requires institutional sign-in at Scopus site)   5 Citations

Abstract

Nerve damage can induce a heightened pain response to noxious stimulation, which is termed hyperalgesia. Pain itself acts as a stressor, initiating autonomic and sensory effects through the dorsal periaqueductal gray (dPAG) to induce both sympathoexcitation and analgesia, which prior studies have shown to be affected by endocannabinoid signaling. The present study addressed the hypothesis that neuropathic pain disrupts autonomic and analgesic regulation by endocannabinoid signaling in the dPAG. Endocannabinoid contents, transcript levels of endocannabinoid signaling components, and catabolic enzyme activity were analyzed in the dPAG of rats at 21 days after painful nerve injury. The responses to two nerve injury models were similar, with two-thirds of animals developing hyperalgesia that was maintained throughout the postinjury period, whereas no sustained change in sensory function was observed in the remaining rats. Anandamide content was lower in the dPAG of rats that developed sustained hyperalgesia, and activity of the catabolic enzyme fatty acid amide hydrolase (FAAH) was higher. Intensity of hyperalgesia was correlated to transcript levels of FAAH and negatively correlated to heart rate and sympathovagal balance. These data suggest that maladaptive endocannabinoid signaling in the dPAG after nerve injury could contribute to chronic neuropathic pain and associated autonomic dysregulation. This study demonstrates that reduced anandamide content and upregulation of FAAH in the dPAG are associated with hyperalgesia and reduced heart rate sustained weeks after nerve injury. These data provide support for the evaluation of FAAH inhibitors for the treatment of chronic neuropathic pain.

Author List

Dean C, Hillard CJ, Seagard JL, Hopp FA, Hogan QH

Authors

Cecilia J. Hillard PhD Associate Dean, Center Director, Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin
Quinn H. Hogan MD Professor in the Anesthesiology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Amidohydrolases
Animals
Endocannabinoids
Gene Expression Regulation, Enzymologic
Heart Rate
Male
Neuralgia
Periaqueductal Gray
Rats
Rats, Sprague-Dawley
Up-Regulation