Medical College of Wisconsin
CTSIResearch InformaticsREDCap

The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism? Arch Biochem Biophys 2009 Apr 15;484(2):134-45

Date

12/06/2008

Pubmed ID

19056332

Pubmed Central ID

PMC2874256

DOI

10.1016/j.abb.2008.11.018

Scopus ID

2-s2.0-64749106532 (requires institutional sign-in at Scopus site)   21 Citations

Abstract

Recent reports suggest that intramolecular electron transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2(-) and peroxynitrite (ONOO(-)) or ONOO(-) and bicarbonate (HCO3(-)) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analyzed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. 280 (2005) 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO(-) (or ONOOCO2(-)) or MPO/H2O2/NO2(-) system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO(-) (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer in these peptides. Further support for the interpretation was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed.

Author List

Zhang H, Zielonka J, Sikora A, Joseph J, Xu Y, Kalyanaraman B

Authors

Balaraman Kalyanaraman PhD Professor in the Biophysics department at Medical College of Wisconsin
Jacek M. Zielonka PhD Assistant Professor in the Biophysics department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Acetylation
Bicarbonates
Electron Spin Resonance Spectroscopy
Electron Transport
Hydrogen Peroxide
Kinetics
Methionine
Nitrates
Peptides
Peroxidase
Peroxynitrous Acid
Reactive Nitrogen Species
Tyrosine