Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

The general anesthetic propofol increases brain N-arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. Br J Pharmacol 2003 Jul;139(5):1005-13

Date

07/04/2003

Pubmed ID

12839875

Pubmed Central ID

PMC1573928

DOI

10.1038/sj.bjp.0705334

Scopus ID

2-s2.0-10744224124 (requires institutional sign-in at Scopus site)   125 Citations

Abstract

1. Propofol (2,6-diisopropylphenol) is widely used as a general anesthetic and for the maintenance of long-term sedation. We have tested the hypothesis that propofol alters endocannabinoid brain content and that this effect contributes to its sedative properties. 2. A sedating dose of propofol in mice produced a significant increase in the whole-brain content of the endocannabinoid, N-arachidonylethanolamine (anandamide), when administered intraperitoneally in either Intralipid or emulphor-ethanol vehicles. 3. In vitro, propofol is a competitive inhibitor (IC(50) 52 micro M; 95% confidence interval 31, 87) of fatty acid amide hydrolase (FAAH), which catalyzes the degradation of anandamide. Within a series of propofol analogs, the critical structural determinants of FAAH inhibition and sedation were found to overlap. Other intravenous general anesthetics, including midazolam, ketamine, etomidate, and thiopental, do not affect FAAH activity at sedative-relevant concentrations. Thiopental, however, is a noncompetitive inhibitor of FAAH at a concentration of 2 mM. 4. Pretreatment of mice with the CB(1) receptor antagonist SR141716 (1 mg kg(-1), i.p.) significantly reduced the number of mice that lost their righting reflex in response to propofol. Pretreatment of mice with the CB(1) receptor agonist, Win 55212-2 (1 mg kg(-1), i.p.), significantly potentiated the loss of righting reflex produced by propofol. These data indicate that CB(1) receptor activity contributes to the sedative properties of propofol. 5. These data suggest that propofol activation of the endocannabinoid system, possibly via inhibition of anandamide catabolism, contributes to the sedative properties of propofol and that FAAH could be a novel target for anesthetic development.

Author List

Patel S, Wohlfeil ER, Rademacher DJ, Carrier EJ, Perry LJ, Kundu A, Falck JR, Nithipatikom K, Campbell WB, Hillard CJ

Authors

William B. Campbell PhD Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin
Cecilia J. Hillard PhD Associate Dean, Center Director, Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Amidohydrolases
Anesthetics, General
Animals
Arachidonic Acids
Brain
Cannabinoid Receptor Modulators
Dose-Response Relationship, Drug
Endocannabinoids
Enzyme Inhibitors
Male
Mice
Mice, Inbred ICR
Polyunsaturated Alkamides
Propofol
Rats
Rats, Sprague-Dawley