Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Sterol carrier protein-2: binding protein for endocannabinoids. Mol Neurobiol 2014 Aug;50(1):149-58

Date

02/11/2014

Pubmed ID

24510313

Pubmed Central ID

PMC4450258

DOI

10.1007/s12035-014-8651-7

Scopus ID

2-s2.0-84911004168 (requires institutional sign-in at Scopus site)   32 Citations

Abstract

The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs "on-demand," thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ∆G values of -3.6 and -4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (-6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA.

Author List

Liedhegner ES, Vogt CD, Sem DS, Cunningham CW, Hillard CJ

Author

Cecilia J. Hillard PhD Associate Dean, Center Director, Professor in the Pharmacology and Toxicology department at Medical College of Wisconsin




MESH terms used to index this publication - Major topics in bold

Arachidonic Acids
Carrier Proteins
Cholesterol
Endocannabinoids
HEK293 Cells
Humans
Lipids
Neurons
Protein Binding
Signal Transduction