Medical College of Wisconsin
CTSICores SearchResearch InformaticsREDCap

Cell-specific transcriptome changes in the hypothalamic arcuate nucleus in a mouse deoxycorticosterone acetate-salt model of hypertension. Front Cell Neurosci 2023;17:1207350

Date

06/09/2023

Pubmed ID

37293629

Pubmed Central ID

PMC10244568

DOI

10.3389/fncel.2023.1207350

Scopus ID

2-s2.0-85161193387 (requires institutional sign-in at Scopus site)   1 Citation

Abstract

A common preclinical model of hypertension characterized by low circulating renin is the "deoxycorticosterone acetate (DOCA)-salt" model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types.

Author List

Wagner VA, Deng G, Claflin KE, Ritter ML, Cui H, Nakagawa P, Sigmund CD, Morselli LL, Grobe JL, Kwitek AE

Authors

Justin L. Grobe PhD Professor in the Physiology department at Medical College of Wisconsin
Anne E. Kwitek PhD Professor in the Physiology department at Medical College of Wisconsin
Lisa Morselli MD, PhD Assistant Professor in the Medicine department at Medical College of Wisconsin
Pablo Nakagawa PhD Assistant Professor in the Physiology department at Medical College of Wisconsin
Curt Sigmund PhD Chair, Professor in the Physiology department at Medical College of Wisconsin
Valerie Wagner Research Scientist I in the Physiology department at Medical College of Wisconsin